
It 

w 

? 

I 

F 

BROOKHAVEN NATIONAL LABORATORY 

4 September 2002 BNL- 69347 

* 
Transiting topological sectors with the overlap 

Michael Creutz 

Physics Department, Brookhaven National Laboratory Upton, NY 11973, USA 

* Presented at Lattice 2002, MIT, Cambridge, MA, June 24-29,2002 



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency there05 nor 
any employees, nor any of their contractors, subcontractors or their employees, makes 
any warranty, express or implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or any third party’s use or the results of such use of any 
information, apparatus, product, or process disclosed, or represents that its use would 
not infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof or its contractors or subcontractors. 
The views and opinions of authors expressed herein do not necessarily state or reflect 
those of the United States Government or any agency thereof. 

Available electronically at- 
http://www.doe.gov/bridge 

Available to U.S. Department of Energy and its contractors in paper from- 
U.S. Department of Energy 
Office of Scientific and Technical Information 
P.O. Box 62 
Oak Ridge, TN 37831 
(423) 576-8401 

Available to the public from- 
U.S. Department of Commerce 
National Technical Information Service 
5285 Port Royal Road 
Springfield, VA 22131 
(703) 487-4650 

@ Printed on recycled paper 

http://www.doe.gov/bridge


1 

Transiting topological sectors with the overlap 
Michael Creutz a * 

aPhysics Department, Brookhaven National Laboratory, 
Upton, NY 11973, USA 

The overlap operator provides an elegant definition for the winding number of lattice gauge field configurations. 
Only for a set of configurations of measure zero is this procedure undefined. Without restrictions on the lattice 
fields, however, the space of gauge fields is simply connected. I present a simple low dimensional illustration of 
how the eigenvalues of a truncated overlap operator flow as one travels between difEerent topological sectors. 

The overlap operator [l] elegantly extends 
many features of chiral symmetry to the lattice. 
In particular, it provides a precise definition of a 
“winding number” for gauge field configurations, 
giving a lattice extention of continuum index the- 
orems [2]. At first sight this seems remarkable 
since the space of Wilson gauge fields is simply 
connected. In selecting sectors, the overlap oper- 
ator must become singular at boundaries. These 
singular configurations form a set of measure zero. 
A simple “admissiblity” criterion [3] guarantees 
that the overlap operator is well defined. This 
criterion, however, is rather strong, and is not 
generally satisfied for configurations in practical 
simulations. 

Here I explore the behavior of the overlap oper- 
ator as one passes through a singularity separat- 
ing two different sectors. This requires a trunca- 
tion of the definition of the overlap. The result is 
that two complex eigenvalues of the overlap op- 
erator collide and evolve into a zero mode plus 
one heaiTy real eigenvalue. I follow this evolution 
explicitly in a simple zero space-time dimensional 
toy model. 
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exclusive. royalty-free license to publish or reproduce the 
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so, for US. Government purposes. I benefited from dis- 
cussions with Y. Shamir and M. Goiterman during visits 
made possible by grant No. 98-302 from the United-States 
- Israel Binational Science foundation (BSF), Jerusalem, 
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M .  

I briefly review the so called “continuum” Dirac 
action and the role of zero modes. The generic 
action for a gauge theory consists of a pure gauge 
term and an interaction with the fermions, S = 
S, + S f .  The gauge part is the square of the field 
strength, S, = $ s F,,FPE The fermion term is 
a quadratic form Sj  = sq!JD,q!J with 

D, 7 -  (a + igA) + m (1) 
The differential operator D, consists of an anti- 
Hermitean kinetic term plus a Hermitean mass 
term. It satisfies the Hermiticity condition 

75Dc = D!rs (2) 
Complex eigenvalues of D, are paired; if D,x = 
Ax then D,y5x = X*y5x. Restricting ourselves to 
the space spanned by eigenvectors with real eigen- 
values, then y~ and D, can be simultaneously di- 
agonalized. On this subspace, an integer index is 
the difference of the number of positive and neg- 
ative eigenvalues of 75, i.e. v = n+ - n-. This 
number is robust under smooth field deformations 
and lies at the basis of the index theorem, which 
says that this index can also be calculated directly 
from the gauge fields as a topological charge [2]. 

For comparison with the lattice theory, we can 
consider the free continuum theory in momen- 
tum space D, = ip . y + m. This has eigenval- 
ues X = zki/pl + m. If we work in finite volume, 
the momentum is quantized in units of F. So 
called “naive” lattice fermions are obtained from 
the Continuum result by the simple substitution 
p ,  j .  sin(p,,a)/a. These are fraught with the 
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famous doublers, extra low energy states when- 
ever any component of the momentum satisfies 
p ,  - E. The doubling problem was solved years 
ago by Wilson [4], who allowed the fermion mass 
to depend on momentum 

(3) 

thus giving the doublers a mass of order lla. In 
momentum space, the free Wilson-Dirac operator 
takes the form 

D, = m + - x(isin(p,a)y,  f.1- cos(ppa)).(4) 

The difficulty with the Wilson approach is that 
the added term violates chiral symmetry. With 
gauge fields, the eigenvalues drift. To maintain 
the physics of massless quarks requires fine tun- 
ing. Real eigenvalues of D,  can appear along 
much of the real axis, and for the purpose of defin- 
ing an index we need a criterion for which of them 
to include. 

The overlap Dirac operator partially answers 
these questions [l]. To construct this operator, 
one starts with D, at a negative m. This is pro- 
jected onto a unitary matrix 

1 
a 

P 

v = D,(D, t D,)-1/2 (5) 

D=l+’ [ ’  (6 )  

from this the overlap operator is simply 

Thus the low eigenvalues of D, become low 
eigenvalues of D ,  while the higher ones are 
projected to  the side of the unitarity circle 
near unity. This process is sketched here 

t’” 

This construction satisfies the continuum prop- 
erty that. D is normal, [D, Dt]  = 0, and preserves 
the 7 5  Hermiticity, 75D = Dty5. Furthermore, 
we have the famous Ginsparg-Wilson relation [5],  
succinctly written as 

D75 = - r j D  (7) 

with the new matrix 

r5 E vy5 = (1 - D ) Y ~  (8) 
satisfying some of the same conditions as 7 5 ,  r5 = 
l?L and Ej = 75“ = I .  The eigenvalues of r5 are 
all fl, implying its trace is an integer. From this 
we define the gauge field index 

1 

v = In r5 2 (9) 
Note the factor of 2, which comes from heavy 
modes at V N 1. 

Our fermionic action, Sf = $D+, is invariant 
under the generalized chiral rotation 

$ + eiey5 ?c, $+ qeier5 (10) 
In this formalism the chiral anomaly appears in 
the fermionic measure 

d$ d$ + d$ d$ e-iTr r5 

much as in continuum discussions [6]. 
A fermion mass introduces, as in the contin- 

uum, the possibility of a CP violating term. To 
have formulas similar to the continuum, it is con- 
venient to consider the fermionic action with mass 
term of the form 

(11) + d+ e--2ib% 

Sj  = $D+ + q(1- V ) M + / 2  (12) 
The rotation M -+ eis75M is physically equiva- 
lent to a modification of the gauge action S, + 
S, + OV. This angle 8 is the strong CP violating 
parameter of innumerable continuum discussions. 

This is all quite elegant, but the space of Wil- 
son lattice gauge fields is simply connected. This 
raises the question of what happens as one con- 
tinues between topological sectors. Along such a 
path D must become singular. To keep things 
well defined, I introduce a cutoff into the defini- 
tion of V 

The quantity E should be analogous to & with 
domain wall fermions. 

I now introduce a simple 2 x 2 matris example. 
I take effectively zero space-time dimensions, with 
( ~ 3  playing the role of 75. The hermiticity condi- 
tion reduces to Div = cr3Dw03. The most general 
two by two matrix satisfying this has the form 

D1y = bo + ibl01 + i b 2 c ~ 2  + bs03 (14) 

Y 
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This is singular when lDwl = bE+b:+b;-b$ = 0. 
We have a Minkowski space with the role of time 
being played by b3. Minkowski space naturally 
breaks into light-like and space-like sectors. The 
index will highlight this division. 

It is convenient to go to an analogue of “polar” 
coordinates and reparametrize 

DW = U (UO +a3a3) U (15) 
with U = ei(a1a1-+a2uz)/2. The coordinate map- 
ping is b3 = a3 and a0 = k d m .  We 
explicitly construct V 

v = DW(D&DW + E  2 ) -1/2 = 

The possible topological sectors fall into three 
cases. The first has a; - a; > 0 representing the 
spacelike sector of our Minkowski space (us = b3 
plays the role of time). In this case V = U2 
and thus D = 1 + U2. This has a conjugate pair 
of eigenvalues A& = 1 + e*’- The winding 
number vanishes: v = $Tr Uy:Ut = 0 

The second case involves a3 > Iuol. Then V = 
a3 and D = 1 + a3. The winding number u = 1; 
so, this represents the analog of an “instanton”. 
The third and final case is a reflection of this, 
with a3 < --)sol, D = 1 - a3, and Y = -1. 

Now I transit between these sectors. As an 
example, let a3 pass through the “light cone” at 
ao > 0. To be explicit, use U = c - isrr2 with 
c2 + s2 = 1. For our interpolation parameter, 
define x = a0 - a3/J(ao - + e2 with range 
-1 5 x _< 1. With the cutoff in place V is no 
longer unitary, but takes the form 

) (17) 
v=-( 1 l+c-x+cx -s - sx 

2 s + sx -1 + c + x + cx 
The eigenvalues of this are 

c(l  -k x) f Jc2(l + x ) ~  - 42) (18) 

‘As an eigenvalue of D L D w  passes through zero, 
a pair of eigenvalues leaves the unitarity cir- 

I cle. This is a perpendicular departure, follow- 
ing another circle. These eigenvalues then col- 
lide and become real. They move out to rest at 

fl. In the process the winding number changes 
by one unit. This behavior is sketched here 

’ 

Eigenvalues of D 

The participating eigenvalues can come from 
anywhere on the unitarity circle. An instanton 
falling through the lattice does not require a large 
fermionic action. Throughout this discussion the 
index Y is an integer except within E of sector 
boundaries. This behavior is fairly robust, with 
other eigenvalues of V moving little. However, as 
shown in [7] the other eigenvalues can also briefly 
leave the unitarity circle its we pass through the 
boundary. 
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